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1. INTRODUCTION 

We report a major advance in the ab initio theoretical prediction of vibrational circular dichroism 

(VCD) spectra. This advance permits useful predictions of VCD spectra for much larger molecules than 

heretofore accessible. As a result, the practical utility of VCD spectroscopy in studying the 

stereochemistry of chiral molecules is greatly enhanced. 

Specifically, we report the first ab initio calculations of VCD spectra based on harmonic force fields 

obtained using density functional theory (DFT). DFT is increasingly used in the calculation of molecular 

properties (Ziegler 1991; Labanowski and Andzelm 1991). Its growing popularity is due to (1) the 

development of new and more accurate density functionals; (2) the increasing versatility, efficiency, and 

availability of DFT codes; and (3) the superior ratio of accuracy to effort exhibited by DFT computations 

relative to other ab initio methodologies. It has been clear for some time that harmonic force fields 

calculated via DFT are substantially more accurate than self-consistent field (SCF) force fields, and are 

comparable in accuracy to force fields calculated using Moller-Plesset second order perturbation theory 

(MP2) (Ziegler 1991; Labanowski and Andzelm 1991; Andzelm and Wimmer 1992; Johnson, Gill, and 

Pople 1993; Handy, Murray, and Amos 1993). Very recently there have been two very important 

developments that greatly enhance the utility of DFT in predictions of vibrational spectra. First, a new 

class of density functionals has been introduced—the so-called hybrid functionals—which are significantly 

more accurate than prior functionals (Becke 1993). Second, efficient analytical derivative techniques have 

been implemented for the calculation of second derivatives of the energy with respect to nuclear 

displacement (Johnson and Frisch 1993,1994). As a results of these developments, it is now possible to 

calculate harmonic force fields of an accuracy comparable to that of MP2 force fields with substantially 

less computational effort. In this report, we document the practicability and illustrate the accuracy of 

calculations of VCD spectra based on DFT force fields calculated using a hybrid density functional. The 

molecules, 4-methyl-2-oxetanone, 1., 6,8-dioxabicyclo[3.2.1] octane, 2, and l,7,7-trimethylbicyclo[2.2.1] 

heptan-2-one (camphor)k, 3, are shown in Figure 1. 

H ^° 

CH, 

Figure 1. Molecules studied in this work:  1, 4-methyl-2-oxetanone; 2, 6.8-dioxabicyclor3.2.n octane; 
3, and l,7,7-trimethylbicvclor2.2.n heptan-2-one. 



Why is the advance we report so important for VCD spectroscopy? Since the discovery of VCD in 

the 1970s (Holzwarth et al. 1974; Nafie, Cheng, and Stephens 1975; Nafie, Keiderling, and Stephens 1976; 

Stephens and Clark 1979), the primary justification for continued study of VCD has been its potential 

utility in the elucidation of the stereochemistry of chiral molecules, both natural and synthetic. However, 

to date, VCD spectroscopy has made very little impact. While the measurement of VCD spectra has 

become almost routine (Nafie 1988; Keiderling 1990), the extraction of structural information from spectra 

has not. The latter requires a methodology for accurately predicting VCD spectra. This, in turn, requires 

ab initio computational methods. While much progress has been made since the earliest ab initio 

calculations of VCD spectra (Lowe, Stephens, and Segal 1986; Jalkanen et al. 1987,1988; Kawiecki et al. 

1988), the calculation of accurate harmonic force fields has remained problematical. It was clear a long 

time ago that SCF force fields are insufficiently accurate to provide useful predictions of VCD spectra 

(except in the case of a few, very small symmetrical molecules). MP2 force fields provide much more 

accurate spectra (Amos, Handy, and Palmieri 1990; Stephens et al. 1993; Stephens et al. 1994). However, 

the computational demands of MP2 force fields increase very rapidly with increasing molecular size, and 

useful calculations on such molecules as camphor (Devlin and Stephens 1994) have only been practicable 

on very large supercomputers. As we demonstrate here, DFT provides a way out of this dilemma. It 

includes correlation but without the extra cost of MP2 calculations. As a result, the way is now clear to 

the routine calculation of VCD spectra with useful accuracy on a wide range of molecules up to a very 

considerable size. Widespread application of VCD spectroscopy is now, finally, close at hand. 

2. METHODS 

Dipole and rotational strengths, Dj and Rj, of a fundamental transition in the ith normal mode of 

energy riWj are calculated within the harmonic approximation using the equations (Stephens 1985, 1987, 

1989): 

Dj =   < 0   u el >>,r 
Rj = Im < 0 Uel    1 >i'< 1     Pmag    0>i (1) 



where the electric and magnetic transition moments are given by 
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Normal coordinates Qj are given by 

XXa " £ SXa,i Qi (3) 

where Xj^ are Cartesian displacement coordinates. Atomic polar tensors (APTs) are given by 

aß -ST- < VG|(Pel)ß|VG> (4) 

where *¥G is the ground electronic state waverunction. Atomic axial tensors (AATs) are given in the 

distributed origin (DO) gauge (Stephens 1987; Jalkanen et al. 1988; Stephens et al. 1989,1990) and with 

respect to molecular origin O by 

(<)'=(^^£^R;rp, A. 
<x8 (5) 

where Iao is given by 
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1öx*. J e 
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and (Iaß) is calculated with the origin at the equilibrium position of nucleus %, R^. The "local" AATs, 

(Iao)    , are, in turn, obtained via the identity 

( 4 )RX" - (I«ß)" " 4^ £  'Py6 Ky Ei 00 (7) 

where Eap(rc) is the electronic component of the APT in the momentum representation (Stephens et al. 

1990; Amos, Jalkanen, and Stephens 1988). The DO gauge provides origin-independent rotational 

strengths. 

For the present work, DFT Cartesian harmonic force fields have been calculated for ^-3 using 

analytical derivative techniques via the program GAUSSIAN 92/DFT (Frisch et al. 1992, 1993). APTs 

are calculated simultaneously. Three density functionals have been employed: LSDA, BLYP, and the 

hybrid functional Becke3LYP (henceforth B3LYP). The LSDA functional (also referred to elsewhere as 

SVWN) uses the standard local exchange functional (Becke 1989) and the local correlation functional of 

Vosko, Wilk, and Nusair (1980). The BLYP functional combines the standard local exchange functional 

with the gradient correction of Becke (1989) and uses the Lee-Yang-Parr (1988) correlation functional 

(which also includes density gradient terms). The B3LYP functional is a hybrid of exact (Hartree-Fock) 

exchange with local and gradient-corrected exchange and correlation terms, as first suggested by Becke 

(1993a). The exchange-correlation functional proposed and tested by Becke (1993b) was 

P      -n       o   ^cLSDA CHF ACB88      _LSDA A~PW91 
Exc=(1-ao)Ex + aoEx      + axAEx        +Ec + acAEc • (8) 

Here AEX
B88 is Becke's gradient correction to the exchange functional and AEC

PW91 is the Perdew-Wang 

gradient correction to the correlation functional (Perdew 1991). Becke (1993b) suggested coefficients 

a0 = 0.2, ^ = 0.72 and ac = 0.81 based on fitting to heats of formation of small molecules. Only single- 

point energies were involved in the fit; no molecular geometries or frequencies were used. The B3LYP 

functional in GAUSSIAN 92/DFT uses the values of a0, ax, and ac suggested by Becke, but uses LYP for 

the correlation functional. Since LYP does not have an easily separable local component, the VWN local 

correlation expression has been used to provide the different coefficients of local and gradient corrected 

correlation functionals: 



E"
L
" - (1 - a„) EK
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The standard fine grid in GAUSSIAN 92/DFT (Trucks and Frisch, to be published) was used in all 

DFT calculations. This grid was produced from a basic grid having 75 radial shells and 302 angular 

points per radial shell for each atom, and reducing the number of angular points for different ranges of 

radial shells, leaving about 7,000 points per atom while retaining similar accuracy to the original 

(75,302) grid. Becke's (1988) numerical integration techniques were employed. In addition, in the case 

of 1, Cartesian harmonic force fields and APTs were also calculated at the SCF and MP2 levels of 

approximation using analytical derivative techniques via GAUSSIAN 92 (Frisch et al. 1992,1993). Local 

AATs were calculated for i-3 at the SCF level of approximation using analytical derivative techniques 

(Amos, Jalkanen, and Stephens 1988; Amos et al. 1987) via CADPAC (Amos 1993). DO gauge AATs 

using SCF, MP2, and DFT APTs are referred to as SCF, semi-MP2, and semi-DFT AATS, respectively. 

Note that the use of the DO gauge permits the partial inclusion of correlation in AATs when correlated 

APTs are available. 

Frequencies, dipole strengths and rotational strengths derived from harmonic force fields, APTs and 

AATs were used to synthesize absorption and VCD spectra using Lorentzian band shapes (Kawiecki 

1988). 

Calculations used 3-21G (Hehre et al. 1986), 6-31G* (Hehre et al. 1986), and [5s4p2d/3s2p] TZ/2P 

(Stephens et al. 1990) basis sets. 

3. RESULTS 

We begin by comparing unpolarized absorption and VCD spectra calculated using 6-31G* B3LYP 

DFT force fields to experimental spectra. The 6-31G* basis set (Hehre et al. 1986) is widely used in ab 

initio computational studies of organic molecules, especially in calculations including correlation (e.g., 

MP2). We examine only the mid-IR spectral region and exclude the C-H stretching region from the 

discussion. Without explicit consideration of an harmonicity, calculations of C-H stretching spectra are 

futile. Experimental mid-IR VCD spectra are limited to frequencies > 650 cm-1 (the current lower limit 

of existing instrumentation). We limit our discussion of unpolarized absorption spectra to the region over 

which VCD spectra have been measured. 



Figure 2a-d shows calculated and experimental mid-IR spectra for 1.. The lower frequency limit of 

the experimental spectra is 690 cm-1. Comparison of calculated and experimental absorption spectra 

yields the unambiguous assignment of fundamentals 7-23 shown in Figures 2a and 2b. The assignment 

is further detailed in Table 1. Calculated frequencies are in all cases greater than experimental 

frequencies; the average deviation of calculated and experimental frequencies is 39 cm-1 (3.3%) and the 

maximum deviation is 74 cm-1 (5.1%). 

Calculated and experimental VCD spectra are compared in Figures 2c and 2d. VCD is observed for 

all fundamentals excepting 22 and 23. The agreement of calculated and observed VCD intensities is quite 

good, being worst for fundamentals 12 and 18. The sign is correctly predicted for all bands except 18. 

Figure 3 shows calculated and experimental mid-IR spectra for 2. The lower frequency limit of the 

experimental spectra is 800 cm-1. Comparison of calculated and experimental absorption spectra yields 

the assignment of the fundamentals 10-38 shown in Figures 3a and 3b. The assignment is unambiguous 

for the fundamentals in the range 800-1,300 cm-1; above 1,300 cm-1, the lower intensity and greater 

congestion of the spectrum, together with the greater probability of contributions from nonfundamentals, 

lessens the confidence level somewhat. The assignment is further detailed in Table 2. Calculated 

frequencies are in all cases greater than experimental frequencies; the average deviation of calculated and 

experimental frequencies is 36 cm-1 (2.9%) and the maximum deviation is 75 cm-1 (5.2%). 

Comparison of the calculated and experimental VCD spectra is complicated by the much lower signal- 

to-noise ratio of the experimental VCD spectrum, in comparison to the absorption spectrum. 

Fundamentals 12-15, 17-20, 23, 24, 26, 28-33, and 38 exhibit clearly defined VCD. For these bands, 

the calculated VCD agrees in sign with the exception of 28 and 29. Below 1,300 cm-1, the agreement 

of calculated and observed VCD intensities is quite good; the agreement is worst for fundamental 26. The 

calculation significantly underestimates the intensities of the bands in the region 1,300-1,400 cm-1. 

Figure 4 shows calculated and experimental mid-IR spectra for 3. The lower frequency limit of the 

experimental spectra is 900 cm-1. Comparison of calculated and experimental absorption spectra yields 

the assignment of the fundamentals 24-58 shown in Figures 4a and 4b. Fundamentals 29-40, 42-44, 

46-50 are clearly resolved and unambiguously assignable. Fundamentals 41 and 45 are weak and not 

clearly resolved. The regions 900-950 cm-1 and 1,440-1,500 cm-1 are more congested and the 

assignments of fundamentals 24-28 and 51-58 are less certain.  The assignment is further detailed in 
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Figure 2. Mid-IR absorption and VCD spectra of R - (+) - 1. Experimental spectra (a and c) from 
(Devlin et al. to be published). Calculated spectra fb and d) use 6-3IG* B3LYP/DFT force 
field and APTs: AATs are 6-3IG* semi-B3LYP/DFT. Calculated spectra use Lorentzian band 
shapes with v = 4.0 cm-1 for all bands. Note that some of the differences between calculated 
and experimental absorption and VCD intensities originate in deviations in experimental band 
widths from v = 4.0 cm"1. The assignment of fundamentals is indicated; see also Table 1. 
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Figure 3. Mid-IR absorption and VCD spectra of (1R, 5S) - (+) - 2. Experimental spectra (a and c) 
from Eggimann, Shaw, and Wieser (1991) and Eggimann et al. (1993). Calculated spectra (b 
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Y = 4.0 cm-1 for all bands. The assignment of fundamentals is indicated; see also Table lT 



Table 2. 6,8-Dioxabicyclo[3.2.1]Octanea 

Fundamental 
Calculation0 Experimentd 

V D R V D R 

38 1,555 4.1 7.2 1,484 13.1 19.4 
37 1,532 12.0 -0.6 1,458 20.7 
36 1,513 5.4 1.0 1,438 11.9 

35 1,506 4.8 -0.4 1,435 
1,430 

5.8 
6.7 

34 1,415 17.2 -0.3 1,365 11.1 
33 1,412 25.0 -6.5 1,362 14.9 -18.8 
32 1,401 14.6 2.4 1,343 21.8 24.9 
31 1,386 11.8 -6.3 1,338 11.4 -29.8 
30 1,376 39.4 7.0 1,331 37.6 52.3 
29 1,359 0.8 0.7 1,315 5.8 -15.2 
28 1,349 30.9 -0.6 1,310 28.1 11.6 
27 1,314 1.7 0.2 1,276 0.8 
26 1,278 12.8 -2.2 1,240 11.5 -16.4 
25 1,243 4.2 0.2 1,211 
24 1,214 25.9 5.7 1,182 34.4 
23 1,187 112.6 8.6 1,157 126.3 13.6 

22 1,149 328.7 -21.7 1,124 
1,119 

171.5 
205.9 

21 1,120 20.4 2.5 1,089 33.4 -9.6 
20 1,095 18.6 18.0 1,076 17.0 19.3 
19 1,053 78.0 30.0 1,033 77.4 20.3 
18 1,047 149.9 -36.0 1,022 190.8 -62.3 
17 1,023 180.7 -29.0 993 248.5 -80.0 
16 979 25.0 -7.3 962 32.6 6.4 
15 953 117.3 71.5 939 120.2 88.0 
14 911 64.5 20.5 893 120.1 63.3 
13 903 103.2 -27.9 882 216.0 -74.0 
12 878 145.3 29.4 857 174.6 32.5 
11 842 8.9 -2.3 832 26.1 
10 
  

815 16.7 -4.5 809 21.2 

a V in cm-1, D in 10-40 esu2 cm2, R in 10-44 esu2 cm2.  Rotational strengths are for the (1R, 5S) - (+) enantiomer. 

Fundamentals are numbered in order starting from the lowest frequency. Nine fundamentals of 2 lie below 800 cm-1. 
c 6-3 IG* B3LYP/DFT harmonic force field and APTs; 6-3 IG* semi-B3LYP/DFT AATs. 

Eggimann, Shaw, and Wieser (1991) and Eggimarm et al. (1993). Note that our assignment of fundamentals differs from that 
of Wieser and coworkers.  Where our assignments are not unambiguous, all alternative possibilities are indicated. 
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Figure 4. Mid-IR absorption and VCD spectra of (1R, 4R) - (+) - 3. Experimental spectra (a and c) 
from Nafie (1984). Calculated spectra (b and d) use 6-31G* B3LYP/DFT force field and 
APTs; AATs are 6-31G* semi-B3LYP/DFT. Y = 4.0 cm"1 for all bands. The assignment of 
fundamentals is indicated; see also Table 3. 
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Table 3.   Calculated frequencies are in all cases greater than experimental frequencies. The average 

deviation of calculated and experimental frequencies is 41 cm-1 (3.2%); the maximum deviation is 

79 cm-1 (5.3%). 

Comparison of the calculated and experimental VCD spectra shown in Figures 4c and 4d is again 

complicated by the lower signal-to-noise ratio of the experimental VCD spectrum. Fundamentals 24, 25, 

27, 30-32, 36, 37, 39,42,44, 46-50, and 57 exhibit clearly defined VCD. For these bands, the calculated 

VCD agrees in sign in every case with the exception of fundamental 30. The agreement of calculated and 

observed VCD intensities is quite good, being worst for fundamentals 32,44, and 50. Despite the greater 

complexity of the regions 900-950 cm"1 and 1,440-1,500 cm-1, calculated and experimental VCD spectra 

are in quite good agreement. 

The level of agreement of calculated and experimental mid-IR absorption and VCD spectra exhibited 

in Figures 2—4 is impressive. However, the agreement is not perfect. The possible sources of error are: 

(1) errors in the force field, APTs, and AATs due to the incompleteness of the 6-31G* basis set; (2) errors 

in the local AATs due to the absence of correlation; (3) errors in the force field and APTs due to the 

inexactness of the B3LYP density functional; and (4) the absence of an harmonicity and condensed 

phase/solvent perturbations in the calculational formalism. 

Basis set error can be determined from calculations using large basis sets. In the case of 1, we have 

carried out calculations using a [5s4p2d/3s2p], TZ/2P, basis set, with the results given in Figure 5 and 

Table 1. The agreement of calculated and experimental frequencies is improved: the average and 

maximum deviations are now 25 cm-1 (2.0%) and 48 cm-1 (3.3%), respectively. Both calculated 

absorption and VCD intensities are in better agreement with experiment. The improvement is more 

marked in the case of the VCD spectrum: fundamental 18 is now correct in sign and the intensities of 

fundamentals 11 and 12 are in significantly improved agreement with experiment. The greater basis set 

dependence of the calculated VCD spectra than of the calculated absorption spectra is attributable to the 

greater basis set error in the local AATs than in the force field and APTs. This is verified by calculations 

using the 6-3IG* force field and APTs together with TZ/2P local AATs, the results of which are also 

given in Figure 5. 

We are not yet able to examine the magnitudes of errors originating in the absence of correlation in 

local AATs by carrying out calculations in which correlation is included. However, we can examine the 
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Table 3.  Camphor* 

Fundamental15 
Calculation0 Experimentd 

V D R g V g 

58 1,560 10.7 -1.6 -0.6 1,481 

57 1,547 11.4 8.4 2.9 1,470 2.1 

56 1,542 0.8 1.4 7.0 

55 1,531 9.1 0.3 0.1 

54 1,526 6.7 4.1 2.4 

53 1,521 12.0 3.3 1.1 1,453 

52 1,516 12.9 -0.4 -0.1 1,449 

51 1,513 6.6 -0.1 -0.1 
50 1,489 24.8 -1.0 -0.2 1,417 -0.6 

49 1,455 18.9 -4.5 -1.0 1,391 -0.9 

48 1,438 11.7 1.9 0.6 1,377 

47 1,434 12.4 -0.8 -0.3 1,371 

46 1,361 14.2 6.9 1.9 1,323 1.7 

45 1,347 2.5 -1.5 -2.4 1,299 
44 1,340 6.6 -2.2 -1.3 1,295 
43 1,312 21.6 -2.9 -0.5 1,277 0.5 

42 1,284 10.1 11.0 4.4 1,245 8.9 
41 1,279 0.1 1.0 40.0 
40 1,258 10.5 3.9 1.5 1,220 
39 1,235 17.5 -8.8 -2.0 1,198 
38 1,226 2.7 1.1 1.6 1,192 
37 1,197 12.5 10.3 3.3 1,166 5.6 
36 1,181 2.0 -5.1 -10.2 1,154 -5.8 
35 1,155 3.9 6.6 6.8 1,128 3.1 
34 1,128 17.6 -7.0 -1.6 1,094 -0.6 
33 1,108 5.5 -9.4 -6.8 1,079 
32 1,064 76.8 -11.2 -0.6 1,045 -2.5 

31 1,045 97.3 -0.9 0.0 1,021 -1.3 
30 1,040 7.9 -4.8 -2.4 1,012 2.2 

29 1,009 0.3 -0.7 -9.3 986 -4.6 
28 970 10.9 2.9 1.1 950 
27 966 4.6 -11.4 -9.9 
26 951 1.7 1.1 2.6 936 
25 950 12.9 18.6 5.8 925 10.7 
24 927 5.7 -9.7 -6.8 913 -12.5 

a V in cm-1, D in 10"^° esu2 cm2, R in 10"44 esu2 cm2; anisotropy ratio g in 10^.  Rotational strengths are for the 

(1R, 4R) - (+) enantiomer. 
b Fundamentals are numbered in order starting from the lowest frequency.  Twenty-three fundamentals of 3 lie below 

900 cm-1. 
c 6-3 IG* B3LYP/DFT harmonic force field and APTs; 6-3 IG* semi-B3LYP/DFT AATs. 
d Devlin and Stephens (1994) and Nafie (1984). 
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Figure 5. Mid-IR absorption and VCD spectra of R - (+) - 1. Spectra a and d are obtained by 
Lorentzian fitting of the experimental spectra (Figures 2a and 2c) followed by elimination of 
all nonfundamental bands. Calculated spectra (b, c, e, f, and g) use B3LYP/DFT force field 
and AFTs; AATs are semi-B3LYP/DFT. In b and e, the basis set is TZ/2P; in c and g it is 
6-31G*. In f, the force field and AFTs are 6-31G* while the local AATs are TZ/2P. y = 
4.0 cm"1 for all bands in all calculated spectra. 

14 



results of calculations in which correlation is not included in the APTs. It is not unreasonable to expect 

that the inclusion of correlation in APTs and in AATs will give rise to contributions to rotational strengths 

of comparable order of magnitude. The results for 1 obtained using 6-3IG* SCF APTs in place of 63IG* 

B3LYP/DFT APTs are given in Figure 6 and Table 1. Both absorption and VCD spectra are qualitatively 

unaffected. Quantitatively, the changes are larger in the absorption intensities, which are generally 

increased by the substitution of SCF for B3LYP/DFT APTs. It is reasonable to conclude that inclusion 

of correlation in the calculation of local AATs will not cause major qualitative changes in the calculated 

VCD spectrum. 

At this time, there does not appear to be any density functional available whose accuracy is 

significantly greater than that of the B3LYP functional. We cannot therefore directly examine the errors 

in B3LYP/DFT calculations by comparison to more accurate calculations. However, we can examine the 

sensitivity of the calculated spectra to alternative, less accurate choices of density functional. The results 

for 1 obtained using two widely employed functionals—LSDA and BLYP—are compared to those 

obtained using B3LYP in Figure 7. Both functionals give absorption and VCD spectra substantially 

different from and in much worse agreement with experiment than given by the B3LYP functional. It is 

clear that the LSDA and BLYP harmonic force fields are significantly less reliable than the B3LYP force 

field. In turn, it is certainly possible that some of the errors in predicted B3LYP absorption and VCD 

spectra are attributable to residual inexactitude in the B3LYP functional. 

The results shown in Figure 5 and Table 1 demonstrate that the 6-3IG* B3LYP force field is not 

substantially improved if a much larger basis set is substituted for 6-31G*. It is therefore of interest to 

examine the consequences of using a smaller basis set. Spectra calculated for 1 using the 3-21G basis set 

are shown in Figure 8. Both absorption and VCD spectra are substantially different from those obtained 

at the 6-3IG* basis set level and in much worse agreement with experiment. It is clear that a basis set 

at least as large as 6-31G* is mandatory if useful agreement with experiment is to be obtained. 

Finally, in Figure 9, we compare the spectra for! calculated using the 6-31G* B3LYP/DFT force field 

to the spectra obtained using 6-31G* SCF and 6-31G* MP2 force fields. APTs are calculated at the same 

level as the force field; local AATs are in all cases calculated at the 6-3IG* SCF level. The MP2 

methodology yields spectra quite similar to those obtained using DFT with the B3LYP functional and in 

slightly worse agreement with experiment. The most noticeable difference is in the relative absorption 

intensities of fundamentals 14 and 15. In contrast, the SCF methodology yields quite different spectra in 
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Figure 6. Mid-IR absorption and VCD spectra of R - (+) - 1. Spectra a and d are the fundamental 
experimental spectra from Figures 5a and 5d. Calculated spectra (p. c, e, and f) use the 6-31G* 
B3LYP/DFT force field. In b and e, the APTs are 6-3IG* B3LYP/DFT and the AATs are 
6-31G* semi-B3LYP/DFT. In c and f, the APTs and AATs are 6-31G* SCF. y = 4.0 cnT7" 
for all bands in all calculated spectra. 
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Figure 7. Mid-IR absorption and VCD spectra of R - (+) - 1. Spectra a and e are the fundamental 
experimental spectra from Figures 5a and 5d. Calculated spectra (b, c, d, f, g, and h) use 
6-3IG* DFT force fields and AFTs; AATs are 6-3IG* semi-DFT. In b and f, the density 
functional is B3LYP; in c and g, it is BLYP; in d and h, it is LSDA. y = 4.0 cm"1 for all 
bands in all calculated spectra. 
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Figure 8. Mid-IR absorption and VCD spectra of R - (+) - 1. Spectra a and d are the fundamental 
experimental spectra from Figures 5a and 5d. Calculated spectra (b, c, e, and f) use 
B3LYP/DFT force field and AFTs; AATs are semi-B3LYP/DFT. In b and e. the basis set is 
6-31G*; in c and f, it is 3-21G. y = 4.0 cm-1 for all bands in all calculated spectra. 
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Figure 9. Mid-IR absorption and VCD spectra of R - (+) - 1. Spectra a and e are the fundamental 
experimental spectra from Figures 5a and 5d. Calculated spectra b and f use 6-31G* 
B3LYP/DFT force field and AFTs; AATs are semi-B3LYP/DFT. In c and g. the force field 
and AFTs are 6-3IG* MP2: AATs are semi-MP2. In d and h, the force field. APTs. and AATs 
are 6-3IG* SCF. y = 4.0 cm"1 for all bands in all calculated spectra! 

19 



very much worse agreement with experiment The importance of including correlation in the calculation 

of harmonic force fields is forcefully demonstrated by these results. At the same time, the B3LYP/DFT 

method is clearly shown to be highly competitive with the MP2 methodology in including correlation. 

Analogous calculations for 2 and 3 to those for 1_ presented in Figures 6-9 confirm the generality of 

the conclusions arrived at above in the case of 1. These calculations will be reported elsewhere. (Note 

that 6-31G* MP2 calculations have already been published for 3 [Devlin and Stephens 1994]). 

In the case of 2, a second conformation is possible in which the six-membered ring is in a boat, rather 

than a chair, conformation. Ab initio calculations (6-31G* SCF, MP2, and B3LYP/DFT) predict a 

4-6 kcal/mole energy difference. Mid-IR absorption and VCD spectra predicted for the "boat" 

configuration of 2 are compared to the experimental spectra in Figure 10. In contrast to the spectra 

predicted for the "chair" conformation, the agreement with the experimental spectra is very poor. The 

difference is especially dramatic in the case of the VCD spectra. As expected, the "chair" conformation 

of 2 is unquestionably that existing experimentally. 

4.  DISCUSSION 

We have demonstrated that calculations of the mid-IR absorption and VCD spectra of .1-3 based on 

6-3IG*  B3LYP/DFT harmonic force fields  are (1) in impressive agreement with experiment; 

(2) substantially more accurate than calculations using the LSDA and BLYP density functionals; 

(3) comparable in accuracy to calculations based on 6-3IG* MP2 force fields, while much less 

computationally demanding. Substitution of TZ/2P and 3-21G basis sets for 6-31G* leads to spectra of 

very similar and much worse accuracy, respectively. 

While the considerable accuracy of DFT calculations using "modern" density functionals has been 

widely reported (Ziegler 1991; Labanowski and Andzelm 1991; Andzelm and Wimmer 1992; Johnson, 

Gill, and Pople 1993; Handy, Murray, and Amos 1993), the sensitivity of predicted vibrational spectra to 

the choice of density functional was not clear prior to this work. Comparisons of harmonic frequencies 

calculated using various functionals, including LSDA (=SVWN) and BLYP, to experimental harmonic 

frequencies did not suggest large differences in accuracy (Johnson, Gill, and Pople 1993). However, 

dipole and rotational strengths depend on vibrational coordinates, which are much more sensitive to the 

accuracy of the force field than are vibrational frequencies.   It is therefore not surprising to find that 
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Figure 10. Mid-IR absorption and VCD spectra of (1R. 5S) - (+) - 2. Experimental spectra (a and c) 
are as in Figures 3a and 3c. Calculated spectra b and d are for the boat conformation of 2 and 
use 6-31G* B3LYP/DFT force field and APTs; AATs are 6-31G* semi-B3LYP/DFT. 
Y = 4.0 cm-1 for all bands. 
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calculated spectra are, in fact, quite sensitive to the choice of density functional. The really new result 

is that the hybrid, B3LYP, functional gives spectra of impressive accuracy while the LSDA and BLYP 

functionals do not. Our work thus defines a threshold level of accuracy for density functionals in future 

calculations of mid-IR vibrational spectra. At the same time, it is clear that further improvements in 

density functionals may well lead to significantly improved vibrational spectra. B3LYP could be replaced 

as the functional of choice in the near future! 

Our work also further illuminates the relative accuracies of DFT and MP2 harmonic force fields. At 

the B3LYP level, DFT and MP2 force fields are very similar in accuracy when this is gauged by the 

comparison of calculated and experimental mid-IR spectra for 1-3. The LSDA and BLYP DFT force 

fields are clearly inferior to MP2 force fields. This latter finding is surprising: it has been reported that 

such functionals yield harmonic frequencies comparable in accuracy with MP2 calculations (Johnson, Gill, 

and Pople 1993). It is possible that this difference reflects the focus of our work on mid-IR spectra, to 

the exclusion of hydrogenic stretching and low-frequency spectral regions, while comparisons of calculated 

and experimental frequencies for small molecules (the only ones for which harmonic frequencies are 

known) include all frequencies and are heavily weighted by hydrogenic stretching frequencies. 

The conclusions we have arrived at have made use of both absorption and VCD spectra in comparing 

theory and experiment While the same conclusions would have been reached if absorption or VCD 

spectra had been used alone, the combined use of both spectra significantly enhances the reliability of the 

assignments of fundamentals and of the evaluation of the relative accuracies of different calculations. The 

usefulness of VCD spectra for this purpose is of course dependent on the reliability with which VCD 

intensities can be predicted.  This is lower than the reliability of predicted absorption intensities since 

(1) absorption intensities require only APTs, while VCD intensities require both APTs and AATs, and 

(2) AATs are less accurately calculated due to (a) the absence of correlation in the calculation of local 

AATs and (b) the greater basis set error in local AATs than in APTs. As expected, the agreement of 

calculated and experimental VCD spectra is generally less perfect than in the case of absorption spectra. 

Nevertheless, it is clear that the 6-31G* semi-B3LYP/DFT AATs used in this work are of sufficient 

reliability to successfully predict the qualitative pattern of VCD intensities with a very small number of 

exceptions, and to support the interrogation of alternative force fields in a meaningful way. 

Currently, the practical limits in calculations of harmonic force fields are imposed by the disk storage 

requirements. Analytical derivative calculations at the MP2 level require much more disk space than do 
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SCF calculations. DFT calculations have identical requirements to SCF calculations. SCF and DFT 

calculations can therefore be carried out for much larger molecules than are accessible to MP2 

calculations. Currently, with the machines available to us (which include a CRAY C90) MP2 6-31G* 

calculations on 3 are close to the limit of practicability. In contrast, DFT 6-3IG* calculations will be 

straightforward for molecules much larger than 3. Our results here lead to the conclusion that these 

calculations will be of useful accuracy as long as the B3LYP (or better) density functional is used. 

5.  CONCLUSION 

The implications for the utilization of VCD spectroscopy are obvious and dramatic. The reliable 

prediction of VCD spectra will be routine for molecules much larger than 3. In turn, the elucidation of 

molecular stereochemistry from VCD spectra will be straightforward. All that remains is to choose 

interesting and important problems to study. 
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